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A fully automated retrieval algorithm for estimating nonlinearly sensed functions is presen- 
ted. This algorithm combines a simple Gauss-Newton iteration with an extended form of 
Generalized Cross Validation. The performance of the algorithm is illustrated in the context of 
a remote sensing problem arising in satellite meteorology. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Remote sensing experiments may be found in every branch of the physical and 
biological sciences. In these experiments, the desired phenomenon cannot be obser- 
ved directly, rather remote or indirect observations are available on some 
functionals of the function of interest. Some examples are: computerized 
tomography, recovery of geological structure via seismic exploration, the recovery 
of atmospheric vertical temperature structure from satellite-observed upwelling 
radiation, and the recovery of particle size distributions from scattered radiation or 
cross-sectional information. For these experiments the usual observational model is 

y, = N(8, Xj) + Ej, i = 1, 2 ,...) n. (1) 

O(t), for r in $2, is the unknown smooth function it is desired to recover, the E,)S are 
zero-mean measurement errors with variance EC: = W; ‘a’, where the scale factor c2 
may be unknown. Q could be the real line, Euclidean d-space, the sphere or the 
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atmosphere. The xis are the design points, and N(8, xi) is, for each i, a nonlinear 
functional of 8. For example, 

N(0, x;) = 1 K(x,, O(t), t) dt. (2) 

The design space, (the space containing the xi’s) may be quite arbitrary. 
It is desired to retrieve an estimate of the function 8 from the observed data. A 

wealth of procedures have been proposed for handling such problems. See Backus 
and Gilbert [2], Chahine [4], Smith [21], Surmont and Chen [24], and also the 
books of Anderssen, de Hoog, and Lukas [ 11, Baker and Miller [3], Deepak [9], 
Groetsch [ll], Rall [20], Tikhonov and Arsenin [25], and Twomey [26]. 
Recently, Bayesian or regularization techniques, and especially the cross-validated 
spline smoothing methods proposed in Craven and Wahba [6], Golub, Heath, and 
Wahba [lo], and Wahba [27] have had some popular success in this area, see 
Crump [7], Hutchinson and Bischof [ 121, Merz [ 163 and Nychka et al. [ 171. In a 
Bayesian framework, the estimation of a function is done by choosing a value of the 
function which is probable in the light of the observed data, but is also in keeping 
with prior notions about the behavior of that function. For the remote-sensing 
model this reduces to estimating 8 by minimizing a quantity of the form 

‘1(8)=: ,f wiC.Yi-N(Oy Xi)]‘+ U(6), /I>0 
r=l 

(3) 

over some plausible set of candidates 8. The first term measures fidelity to the 
observed data, while the second term, J(0), takes the prior information into 
account. Here we let J be a quadratic functional of 8 which is zero when 8 is the 
zero function; (e.g., as J(0) = j [fl”(t)]’ dt). The smoothing parameter, I, controls 
the relative weighting given to the prior. Formally, 1 is a free parameter to be 
chosen by the analyst, but in practical situations it is convenient to have a reliable 
automatic procedure for isolating a ball-park value. In this paper we describe how 
the Generalized Cross Validation of Craven and Wahba [6], can be adapted to 
handle this problem. The result is a fully automatic retrieval algorithm for non- 
linear remote sensing experiments. 

Our analysis could have been carried out in a function space setting, however, we 
decided to avoid this generality. Here we suppose that the function 8 can be well 
approximated by a finite collection of K basis functions d,, i.e., 

(4) 

where P = Ml ,..., BK) ’ is an element of RK. If n is small, or even of moderate size, K 
will generally be larger than n, we discuss the choice of K in a particular example 
later. With this, the remote sensing problem is rephrased as the estimation of the 
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coefficients /I from the data. Substituting into Eq. (3) and absorbing wi inside the 
brackets, the estimate of B minimizes 

(5) 

where Zi=& yi, @, Xi) = &N[Cf= 1 /3y4y, xi] and, since J is quadratic, 
p’Z/I = J(C,“= 1 flYtiY). In a practical problem the approximation properties of the 
basis functions should be carefully considered in the light of the resolving power of 
the instrument and, of course, the measurement noise. In this connection, B-spline 
basis functions, described in the book by De Boor [8], have three very attractive 
features: 

(i) excellent approximation properties; 
(ii) local support which, in integral equation settings, can simplify numerical 

quadrature; 
(iii) publically available software for computational manipulation. 

From a theoretical point of view the introduction of the basis functions is not 
necessary, it will, we hope, make the algorithm a bit more transparent. A discussion 
of the more elaborate function space theory can be found in O’Sullivan [18] and 
the references cited therein. The paper is organized as follows: The retrieval 
algorithm is presented in Section 2. The algorithm selects an appropriate value for 
the smoothing parameter by minimizing an extended Generalized Cross Validation 
(GCV) function. In Section 3 we review the idea of GCV for linear problems and 
motivate the extension to the nonlinear case. Section 4 talks about a temperature 
profile retrieval problem which arises in Satellite Meteorology and reports on a 
small Monte Carlo study illustrating the performance of the method. 

2. THE AUTOMATIC BAYESIAN RETRIEVAL ALGORITHM 

For a given trial value of 2, the minimizer of the objective function, Eq. (5), is 
computed via a sequence of Gauss-Newton iterates. Let a$‘) be the Ith approximate 
minimizer of (5). At the (/+ 1)st step, q(/?, xi) is expanded about /Ii’) as 

rl(P9 xi) x rl(BY’3 xi) + vrl(P!l”, xi)(D - PV’) 

and the new iterate is defined to be the minimizer of the quadratic function 

(6) 

i ,i Czi- ?(PY’, xi) -vll(B$.“, Xj)(p- /?$“)I2 + l$‘.Z/?. 

I=1 

(7) 

So letting Xt) = f3q(/3, x,)/a/?,1 B = 81 ) (( and zj’) = X,!‘)by’ + zi - r,Q\‘), xi) the iteration is 

py + 1) = [ p’jyu) + &Q-I - ‘-p’zu), I= 1, 2,.... (8) 
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Once the iteration numerically converges, say at stage L, 2 is assessed by the exten- 
ded GCV function, I’(J), described in Section 3, 

I’(I)=;RSS(I) t+-&(i)) , 1 
2 

where RSS(I)=Cy= 1 [Zi - q(flA, Xi)] 2 is the residual sum of squares and A.(I) = 
X(L)[X(L)‘$L) + nlC]-lX(L)’ A r ange of I-values is explored and the “optimal” 
value found by minimizing I’(n) w.r.t. 1. In practice, it has been found that it is best 
to do this minimization in log I scale. Dropping superscripts the core of the 
algorithm can be conveniently implemented using Cholesky factorizations: 

(1) Find the Cholesky factorization of XX+ nlC: 

RR’= [X’X+nlC]. 

(2) Solve for p1 by back substitution: 

RR’j, = x’z. 

(3) When convergence is reached compute the GCV: 

V(A) =j RSS(A) 1 -i tr ((RR’)-‘X’X) . 
I 

2 

The calculation of the X-matrices will necessitate integration of the basis 
functions whenever the functionals N(., xi) involve integrals of 0. Numerically such 
integrations can be rapidly performed if the basis functions have local support (such 
as B-splines). Aside from the computation of the iterative design matrices, the 
operation count of the algorithm is dominated by the O(K3) Cholesky steps. This is 
to be expected since the technique ignores any structure which the matrices 
[X(‘)‘X(‘) + nA.Z] may possess. In particular situations it would be desirable to 
exploit any structure which these matrices possessed. 

3. GENERALIZED CROSS VALIDATION 

In our retrieval algorithm values of the smoothing parameter are assessed by 
means of a GCV function. GCV was developed by Craven and Wahba [6] for 
assessing 1 in the case where the data functionals were linear. Here we describe how 
this technique works and provide an extension to the nonlinear case. 

3.1. The Linear Case 

If q(p, xi) is linear then we may write q(/& xi) = X,/3, where Xi is an element of 
RK. It follows that the estimate, fii, solves the linear system 

[XX+ nE]j?z = X’z (10) 
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where the rows of X are given by the vectors Xi= (Xi,, Xi2,..., X,). Assuming 
[XX+ nl,?Y] is of full rank, 

pn = [XX-t nlC] - ‘x’z, (11) 

and the predictions are 

xp, = X[J?X + nkr] - lxz, 

z A(l)z, say. (12) 

In statistical jargon, A is the hat-matrix for the regression problem. With this 
notation, Craven and Wahba’s GCV function may be written as 

v(n)=: ,i [zi-XiPJz/[Atr(Z--4(d))]’ 
r=l 

E$ R%(I) i tr(Z- A(R)) . 1 
2 

The tr(Z- A(1)) can be viewed as an estimate of degrees of freedom for error. As 
J-P 0 the residual sum of squares and the degrees of freedom for error are made 
small, while as 3L -P co both these terms become large. Consequently, I’(2) is an 
assessment of 1 which balances degrees of freedom for error against model lit. More 
formally, Golub et al. [lo], motivate I’(n) as a rotational invariant version of 
ordinary cross validation. The ordinary cross validation function, P’,(n), is defined 
as 

~o~4=~k~l C+c-&BFlk’12~ (14) 

where /3$“1 is the minimizer of the objective function with the kth data point omit- 
ted, i.e., /?ikl minimizes 

i iFk CziBxiS12 + nB’zP- (15) 

The idea is that if 1 is a good choice, then Xk/?Jkl should be, on average, a good 
predictor of zk. Let p[uk] be the solution in Eq,(lO) with the kth data point, .zk, 
replaced by uk. Then working from the identity, proven in Lemma 3.1 of [6], 

~/cP,C% + &I = ZJPI (16) 

where Jk = Xk/3$Rl - zk. One can verify, by direct algebra, that 

1 * CZk - &/%I2 
v”(n)=nk;l [l-a,&)]’ (17) 
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is the kth diagonal entry of II( Finally, if we replace a,&(n) by (l/n) c,“=, a,(l) 
then V, is rotationally invariant, see [lo], and we have that 

V,(A) = 1. f: CZk - xkq Ok(A), 
n kc, c1 -akk(l)l 

(18) 

where 

wk(n)= [l -akk(n)]2 
i[ 

1 -; f $,(A) 1 
2 

/=l 

which is the expression for V(A) above. 
Asymptotically it has been shown that the J which minimizes the GCV function, 

k’(n), is a good estimate of the ;1 which minimizes the “true” predictive mean square 
error 

R(J-)=; i IlX,P, - Jm’, (19) 
r=L 

where /? is the true regression parameter in the model. A discussion of these and 
other related issues can be found in Craven and Wahba [6], Li [13], Lukas [ 151, 
Ragozin [19], Speckman [23], and Wahba [27-291. Moreover it is known that 
the A which minimizes R(I) frequently approximately minimizes other quadratic 
loss functions such as j[e,(s) - e(s)]’ d s, where 8, estimates the function 13, see Cox 
[5], Lukas 11151, and Wahba [28]. 

3.2. The Nonlinear Case 

When q(,, x,) is nonlinear, the Bayesian estimator is no longer a simple linear 
function of the data. However, by expanding q(jIi, xi) in a first order Taylor series 
expansion about fil, we can write /I1 in pseudo-linear form as 

PA: = [x’X+ nAC]-‘X’z*, (20) 

where X, = (an@, x~)/@~)[~=~~ and z* = X,fiA + zi- l(fll, xi). To extend the GCV 
function we now need to find an appropriate measure for degrees of freedom for 
error. A natural thing to do is look at the hat-matrix for the linearized estimator 
Eq. (20), i.e., A(i) =X(X’X+nilZ)-‘X, from which we construct an extended 
GCV function 

f’(n)=;RSS(I) 
2 

$tr (Z-A@)) , 1 (21) 
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where RSS(I) = C;= i [zi - v(/.?~, Xi)]‘. Again V(2) can be related to ordinary cross 
validation: With the same definition for fin , rkl the ordinary cross validation function 
Vo(A), is given by 

(22) 

Letting 6, be q(fi$“l, xn) - zk and Bn[zk + Sk] be defined as in the linear case, one 
can prove, by an argument paralleling Lemma 3.1 of [6], that 

Hence 

?(b$“‘, xk) = rt(B,dzk + skl, xk). (23) 

czk - ?(P$“‘, xk)12 

L1 -a:k@)l’ 
(24) 

where 

azk(n) = q(pA [zk + Sk], xk) - dp,l [zk], xk) 

8k 
(25) 

Approximating a&(n) by the kth diagonal element of the linearized hat-matrix, 
ukk(l), We have 

czk - ?@,I, xk)12 

[ 1 - akk(n)]* ’ 
(26) 

and a relationship between F’(n) and ordinary cross validation is obtained as 
before. By analogy with the linear case, one would suspect that the minimizer of 
V(1) ought to come close to minimimizing the true predictive mean square error 
R(1) = (l/n)C;, i [r(PI, xi) - ~(8, xi)]‘. In the next section we provide some 
numerical justification for this. 

4. REMOTE SENSING ATMOSPHERIC TEMPERATURE PROFILES 

4.1. Description of the Problem 

To illustrate the performance of our automatic Bayesian retrieval algorithm, we 
consider a remote sensing problem arising in satellite meteorology. Modern 
meteorological satellites, such as those in the TIROS-N series, have high resolution 
instruments on board, which measure the intensity of upwelling radiation at selec- 
ted channel frequencies. The basic features of these measurement systems are 
described in Smith et al. [22]. The inversion problem is to retrieve an estimate of 
the atmospheric temperature profile, beneath the satellite, from the noisy upwelling 
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radiance measurements. To proceed one needs to have some understanding of how 
atmospheric temperature profile information is manifested in the radiance data. For 
a nonscattering atmosphere in local thermodynamic equilibrium the radiative trans- 
fer equations, Liou [14], describe how the satellite upwelling radiance 
measurements relate to the underlying atmospheric temperature distribution T 

(27) 

where x is some monotone transformation of pressure p; x, corresponding to the 
surface and x,, corresponding to the top of the atmosphere. Meteorologists often 
work in kappa units, i.e., x(p) = p5”, since atmospheric variations are believed to be 
roughly constant in this scale. t,(x) is the transmittance of the atmosphere above x 
at wavenumber v, and B, is Plank’s function given by 

B,[Tj = c,v3/[exp(c,v/T) - l] 

where 

cl = 1.1906 x 10e5 erg cm2 set-’ 

and 

c2 = 1.43868 cm deg K. (28) 

To an approximation one can use the radiative transfer equations to model 
satellite radiance data as 

y; = R,(T) + E,, i = 1, 2 ,..., m, (29) 

where yi is the satellite radiance measurement at wavenumber vi in units of 
mW/(m*sr’cm-‘). The errors si having mean zero and standard deviation ~;“*a. 
The relative weights, wi, are known but the scale factor 0 is usually not known. In 
practice one typically has a good starting guess, TO, for the temperature profile, 
either from the regional climatology or a meteorological forecast. Consequently the 
problem is to estimate an update or correction, 8, to this initial profile on the basis 
of given radiance data. In the notation of Section 1, the objective is to estimate 6 
given measurements 

yi = N(8, Vi) + Eiy i = 1, 2 ,..., m, (30) 

where N(B, vi) = Ry(TO f 0) and .si are mean zero random errors with standard 
deviation w - i/*g I ’ 

4.2. Monte Carlo Evaluation of the Retrieval Algorithm 

We decided to study the behavior of the retrieval algorithm on the TIROS-N 
measurement system. The basic characteristics of the fifteen temperature sounding 



NONLINEAR REMOTE SENSING 449 

TABLE I 

Characteristics of the Temperature Sounding Channels on TIROS-N 

Channel Wavenumber 
number “8 

Noise level 
,;‘/2 

1 
2 

4 
5 
6 

8 
9 

10 
11 
12 
13 
14 
15 

668 2.9257 
679 1.4018 
691 1.5142 
704 0.8697 
716 1.1538 
732 1.1443 
748 1.6995 

2190 0.01706 
2213 0.01088 
2240 0.01392 
2276 0.01682 
2361 0.02533 
1.792 0.1595 x 1o-4 
1.833 0.1391 x 1o-4 
1.933 0.3092 x 1O-4 

channels on this system are given in Table I. These channels correspond to HIRS 
channels 1-7 and 13-17, and MSU channels 2-4 given in [22]. 

A more comprehensive description of these channels can be found in the Smith et 
al. paper. To study the performance of the algorithm we conducted a small Monte 
Carlo experiment. Three real atmospheric temperature profiles, obtained directly 
from radiosondes, and corresponding atmospheric transmission characteristics were 
kindly provided to us Dr. Thomas Koehler of the Meteorology Department at the 
University of Wisconsin-Madison. These profiles and the regional climatology are 
graphed in Fig. 1. For each profile, T, ten sets of simulated radiance measurements 
were generated according to 

yi = Rv,( T) + &i, i = 1, 2 ,..., 15, (31) 

where si is drawn from a normal distribution with mean zero and variance w;‘. 
Working from the simulated radiance data and using climatology as the initial 
guess, the retrieval algorithm was used to estimate the underlying temperature 
profile. The prior functional J which we used was J(0) = j;; [B”(x)]~ dx, reflecting 
the fact that a priori we thought the correction, resolvable by the instrument, 
should be smooth. Retrievals were done in a space of K = 29 cubic B-splines which 
had knots of multiplicity three at the surface (p = 1000 mb) and top (p = 0 mb) of 
the atmosphere. The remaining 27 interior knots were roughly equispaced in kappa 
units. One wants to use a sufficient number K of B-splines so that no important 
resolution is lost due to approximation error. In general for a picture to be drawn 



O’SULLIVAN AND WAHBA 

FIG. 1. True and initial (regional climatology) temperature profiles I, II, III. 

on 84 x 11 page, K = 40 to 80 corresponds to the resolution of plotter pens and the 
human eye. However, the quality of the measurement system must also be taken 
into account. In the present application, due to the extreme ill-posedness of the 
problem, relatively little line scale structure can be recovered. Consequently, it is 
believed that the choice of K = 29 B-splines represented no tangible loss of accuracy 
over solving the problem with, say K = 80. Our computations made extensive use of 
B-spline software originally written by De Boor [IS]. 
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TABLE II 

Performance of the Retrieval Algorithm 

RMS 

Profile Initial Guess 

I 3.26 
II 3.24 

III 7.83 

Retrieved Estimate Ellicact of GCV 

0.65 0.98 
0.58 0.96 
0.57 0.95 

The performance of the algorithm can be assessed in a variety of ways. First, we 
look at the RMS errors in the estimated profile and compare these errors to the 
corresponding errors in the first guess. The RMS error for an estimated profile, p, is 
defined to be 

RMS = (32) 

where T is the true temperature profile; the RMS for the initial guess profile is 
similarly defined. Table II gives the median of the ten RMS values obtained on each 
of the three temperature profiles. One can see that the retrieval algorithm achieves a 
substantial reduction in this RMS error in all cases. The efficacy of the GCV 
procedure is measured by looking at the square of the ratio of the RMS error for 
the best possible choice of 1, to the RMS error corresponding to the value of 1 
minimizing the GCV, i.e., 

efficacy = [mjn RMS(I)/RMS(x)]*. (33) 

Table II summarizes these efficacy numbers; for each profile the median ellicacy is 
very close to 1.00 demonstrating that the GCV procedure does a good job of pick- 
ing a value of I which minimizes the RMS prediction error. 

The bias and variability characteristics of the retrieved estimates are plotted in 
Fig. 2. These bias and variability measures were constructed as follows: For a par- 
ticular atmospheric level, x, corresponding to the ten sets of simulated radiance 
data, we have ten differences, ei, between the estimated and true temperature 
profiles 

ei = Pi(X) - T(X), i = 1, 2 )...) 10. (34) 

Since the distribution of these errors tends to be somewhat non-Gaussian, bias is 
defined to be the median, rather than the mean, of these differences and variability 
to be the median absolute deviation (MAD) of the differences divided by 0.6745. 
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T 

:, 

5 10 

FIG. 2. Bias and variability characteristics of retrievals. 
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The factor 0.6745 is used so that if the e:s were Gaussian then the variability 
measure would consistently estimate the standard deviation: 

bias=med{ei, i= 1, 2 ,..., 10) 
(35) 

variability = med 
(e, - bias1 

0.6745 

PROFILE t I 
--True 

‘Estmlaled 

700 rnb - 

1000 rnb 

1 I I I I I I , , I 
200 a00 220 220 240 240 260 260 280 280 300 300 

TEMPERATWE, ‘K TEMPERATWE, ‘K 

PROFILE an 
-*ma Estimated 

100 nib - 

a 
Z350rnb- 
E 

700 nib - 

--True 
Estimated 

100 nib - 

TEMPERATURE. ‘K 

‘0 

FIG. 3. Fifth best retrievals, with respect to an RMS performance ordering. 
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Figure 3 compares some actual estimates with the underlying truth. In each case, 
the 5th best estimate (based on RMS error) was chosen for display. Figures 2 and 3 
indicate that the retrieval algorithm performs quite well. In all cases the bias is on 
the order of one degree while the variability is on the order of two to three degrees. 
These results are encouraging especially when one considers that we are using only 
15 noisy integral measurements. In fact if the radiative transfer equations are 
linearized about a standard atmosphere, approximate “transmission windows,” W,, 
for the 15 channels can be found. These windows are plotted in Fig. 1 of Smith et al. 
[22]. Channel measurements can roughly be represented as 

N(8, Xi)% j W,(x) e(x) dx. (36) 

Smith’s plot shows that the transmission windows are broad and overlap, making 
the retrieval problem quite ill-posed. A reasonably good starting guess is required in 
this application but this is typically available. The modest improvements over the 
starting guess which we obtain above are, economically, very important. Incor- 
porating additional information such as the location of the tropopause or surface 
information ought to further improve the performance of the method. Even with the 
small number of measurements the GCV clearly emerges as a valuable technique 
for choosing the smoothing parameter. 

REFERENCES 

1. R. ANDERSSEN, F. DE HCOG, AND M. LUKAS, “The Application and Numerical Solution of Integral 
Equations,” pp. 123-136, Sijthoff & Noordhoff, Germantown, 1980. 

2. G. BACKUS AND F. GILBERT, Philos. Trans. R. Sot. Ser. A 266 (1970), 123-192. 
3. C. T. H. BAKER AND G. F. MILLER, “Treatment of Integral Equations by Numerical Methods,” 

Academic Press, London/New York, 1982. 
4. M. CHAHINE, in “Inversion Methods in Atmospheric Remote Sensing” (A. Deepak, Ed.), Academic 

Press, New York, 1977. 
5. D. D. Cox, “Approximation of the Method of Regularization Estimators,” Tech. Rep. No. 723, 

Statistics Dept., University of Wisconsin-Madison, 1983. 
6. P. CRAVEN AND G. WAHBA, Numer. Math. 31 (1979), 377403. 
7. J. CRUMP AND J. SEINFELD, Aerosol Sci. Tech. 1 (1982), 15-36. 
8. C. DE-R, “A Practical Guide to B-Splines,” Springer-Verlag, New York, 1978. 
9. A. DEEPAK, “Inversion Methods in Atmospheric Remote Sensing,” Academic Press, New York, 

1877. 
10. G. GOLUB, M. HEATH, AND G. WAHBA, Technometrics 31 (1979), 315-224. 
11. W. C. GROETSCH, in “Research Notes in Mathematics No. 105,” Pitman, Boston, 1984. 
12. M. HUTCHINSON AND R. BISCHOF, Awt. Meteorol. Msg. 31 (1983), 179. 
13. KER CHAU LI, “From Stein’s Unbiased Risk Estimates to the Method of Generalized Cross 

Validation,” Tech. Rep. No. 83-34, Statistics Dept., Purdue University, 1983. 
14. K. Llou, “Introduction to Atmospheric Radiation,” Academic Press, London/New York, 1979. 
15. M. LUKAS, “Regularization of Linear Operator Equations,” Unpublished Ph. D. thesis, Australian 

National University, 1981. 



NONLINEAR REMOTE SENSING 455 

16. P. MERZ, J. Compur. Phys. 38 (1980), 64-85. 
17. D. NYCHKA, G. WAHBA, S. GOLDFARB, AND T. PUGH, “Cross-Validated Spline Methods for the 

Estimation of Three Dimensional Tumor Size Distributions from Observations on Two Dimensional 
Cross Sections,” J. Amer. Slat. Assoc. 79 (1984), 832-846. 

18. F. O’SULLIVAN, “On the Analysis of Some Penalised Likelihood Estimation Schemes,” Tech. Rep. 
No. 726, Statistics Dept., University of Wisconsin-Madison, 1983. 

19. D. RACOZIN, “Error Bounds for Derivative Estimates Based on Spline Smoothing of Exact or Noisy 
Data,” Tech. Rep. No. GN-50, Statistics Dept., University of Washington-Seattle, 1981. 

20. L. B. RALL, “Computational Solution of Nonlinear Operator Equations,” Wiley, New York, 1969. 
21. W. SMITH, J. Atmos. Sci. 40 (1983), 202552035. 
22. W. L. SMITH, H. M. WOOLF, C. M. HAYDEN, D. Q. WARK, AND L. M. MCMILLIN, Bull. Amer. 

Meteorol. Sot. SO, No. 10 (1979), 1177-1187. 
23. P. SPECKMAN, “Efficient Nonparametric Regression with Cross-Validated Smoothing Splines,” Tech. 

Rep. No. 45, Statistics Dept., University of Missouri-Columbia, 1982. 
24. J. SURMONT AND Y. M. CHEN, J. Compur. Phys. 13 (1973), 288-302. 
25. A. TIKHONOV AND V. ARSENIN, “Solution of Ill-Posed Problems,” Wiley, New York, 1977. 
26. S. TWOMEY, “Introduction to the Mathematics of Inversion in Remote Sensing and Indirect 

Measurements,” Elsevier, New York, 1977. 
27. G. WAUBA, SIAM J. Numer. Anal. 14 (1977), 651-667. 
28. G. WAHBA, in “Solution Methods for Integral Equations with Applications” (M. Goldberg, Ed.), 

pp. 183-194, Penum, New York, 1979. 
29. G. WAHBA, in “Statistical Decision Theory and Related Topics III” (J. 0. Berger and S. S. Gupta, 

Eds.), pp. 383-418, Academic Press, New York, 1982. 

581/5913-a 


